NATURAL & WORKING LANDS (NWL) OPPORTUNITIES FOR A NET-ZERO FUTURE

Prepared by the World Resources Institute

Michigan Council on Climate Solutions | June 22, 2021

REACHING NET ZERO

REACHING NET ZERO

NATURAL & WORKING LANDS ARE CENTRAL TO SCALING CARBON REMOVAL

- Tree restoration
- Direct air capture
- Agricultural soil carbon
- Speculative bets
- Supplemental pathways

Source: Mulligan et al. 2020, CarbonShot: Federal Policy Options for Carbon Removal in the United States. WRI.

CARBON REMOVAL OPTIONS (POTENTIAL BY 2050)

NWL PATHWAYS FOR CARBON REMOVAL

NWL PATHWAYS FOR CARBON REMOVAL

NWL PATHWAYS FOR CARBON REMOVAL

OTHER PATHWAYS: AVOIDED CONVERSION

OTHER PATHWAYS: TERRESTRIAL WETLANDS

GHG Sources	GHG Sinks
Draining causes soil oxidation and accelerated decomposition, releasing CO_2 and CH_4	Wetlands store organic CO ₂ through accumulation of organic matter, which decomposes slowly under water

Conceptual model of GHG exchange in a wetland.

 F_{cs} carbon sequestration; F_{me} methane emissions; GPP gross primary productivity; R_p plant respiration; R_s soil respiration. Source: Wetlands, Carbon, and Climate Change

Sources: SOCCR2, EPA Wetlands Protection and Restoration

MICHIGAN FOREST CARBON EMISSIONS AND REMOVALS

^{*} Does not include trees in agroforestry systems

NWL OPPORTUNITY ASSESSMENT

- Conducted by TNC and WRI in 2019 in partnership with US Climate Alliance
- Identified 9 NWL pathways that have the potential to reduce emissions or increase carbon removal in Michigan
- Top 3 opportunities:
 - 1. Restocking forests: 3.3 MtCO₂e/yr
 - 2. Reforestation: 3.1 MtCO2e/yr
 - 3. Silvopasture: 3.1 MtCO2e/yr

Michigan Carbon Gain Potential

NWL INVENTORY OPPORTUNITIES: 'YOU CAN'T MANAGE WHAT YOU DON'T MEASURE'

Why develop a GHG inventory for NWL?

- Quantify GHG emissions and removals in NWL and track changes over time
- Inform targets and goal setting, policymaking and communications

Inventory Challenges for NWL

- GHGs constantly in flux with high variability across landscapes
- Our understanding of how management practices and other factors impact GHG fluxes is still evolving

Limitations in Federal Data

- EPA's National GHG
 Inventory does not
 report state-level
 estimates for all NWL
 categories
- State Inventory Tool
 (SIT) relies on old or
 limited data for NWL
- Uncertainty is high

Opportunities

Improve timeliness, enhance resolution and reduce uncertainty:

- Enhance field data collection
- Integrate remote sensing data such as LiDAR
- Customize GHG models and emission factors

QUESTIONS?

Haley Leslie-Bole – <u>haley.leslie-bole@wri.org</u>